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Abstract

Previous analytical work on stability of fluid-conveying pipes assumed a uniform velocity profile for the conveyed

fluid. In real fluid flows, the presence of viscosity leads to a sheared region near the wall. Earlier studies correctly note

that viscous forces do not affect the dynamics of the system since these forces are balanced by pressure drop in the

conveyed fluid. Although viscous shear has not been ignored in these studies, a uniform velocity profile assumes that the

sheared region is infinitely thin. Prior analysis was extended to account for a fully developed non-uniform profile such

as would be encountered in real fluid flows. A modified, highly tractable equation of motion was derived, which includes

a single additional parameter to account for the true momentum of the fluid. This empirical parameter was determined

by numerical analysis over the Reynolds number range of interest. The stability of cantilever pipes conveying fluid with

two types of non-uniform velocity profile was assessed. In the first case, the profile was a function of Reynolds number

and transition to turbulence occurred before the onset of flutter instability. This case had stability properties similar to

the uniform velocity case except in specific narrow regions of the parameter space. The second case required that the

Reynolds number be such that the flow was always laminar. For this case, lower fluid velocity was required to achieve

instability, and the oscillation frequency at instability was considerably lower over much of the parameter space,

compared to the uniform case.

& 2010 Elsevier Ltd. All rights reserved.
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1. Introduction

The study of the dynamics of fluid-conveying pipes can be traced to Bourri�eres (1939), who carried out theoretical

and experimental investigations of instability of a cantilevered pipe conveying fluid. The problem was revisited by

Ashley and Haviland (1950) a decade later, following observations of vibration in the Trans-Arabian pipeline. A large

volume of research has been done since then by Paı̈doussis and co-workers, and his review paper (Paı̈doussis and Li,

1993) provides an excellent introduction to the topic. A review of the literature of fluid-conveying pipes indicates that all
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Fig. 1. A fluid-conveying pipe and a magnified view of a small length element.
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standard formulations of the problem have been investigated. The pinned–pinned boundary condition was studied by

Feodoseev (1951) and Housner (1952) and the cantilever problem was investigated by Bourri�eres (1939) and Gregory

and Paı̈doussis (1966). Other researchers extended the analysis to include Timoshenko beam models (Paı̈doussis and

Laithier, 1976), nonlinear formulations (Bajaj et al., 1980; Holmes, 1978; Lundgren et al., 1979), external flows

(Hannoyer and Paı̈doussis, 1978), unsteady flows (Paı̈doussis and Issid, 1974), and many other effects.

The assumption of plug flow is ubiquitous in analytical treatments of the problem. Under this assumption, the

velocity profile is uniform across the cross-section of the pipe. This assumption may be justified for a given system with

the observation that at high Reynolds number, the velocity profile is nearly uniform over the central region of the cross-

section, with only a thin, highly sheared annular region near the pipe wall. The plug flow assumption is less valid at low

Reynolds numbers, particularly if the flow is laminar. For a given working fluid and a pipe with given dimensions and

material properties, the Reynolds number uniquely defines a value for the relevant nondimensional velocity, but this is

not true in the general case. In this paper we have generalized the results of previous work to account for non-uniform

flow, both in the cases of non-ideal turbulent flow and laminar flow.

This paper is organized as follows. The equation of motion of a pipe conveying fluid with a uniform velocity profile

(plug flow) is presented in Section 2 as background material. The derivation of plug flow is extended to a non-uniform

velocity profile in Section 3. A triple plug flow model is first studied and then extended to N-plug flow which can be used

to model an arbitrary velocity profile for large values of N. The resulting equation for the non-uniform flow differs from

the standard equation for uniform flow by a single constant; it is highly tractable, requiring no more effort to solve than

the standard equation. This constant, a momentum correction factor,1 is determined in Section 4. The uniform and non-

uniform flow equations for a cantilever pipe are solved in Section 4 and the results are compared in Section 5 for both

laminar and turbulent flow. Concluding remarks are provided in Section 6.
2. Background—Uniform velocity profile

Consider the fluid-conveying pipe in Fig. 1 where U denotes the fluid velocity (constant) relative to the pipe.

Assuming an Euler–Bernoulli beam model of the pipe, its equation of motion [see Paı̈doussis (1998) for details] can be

written as follows:
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where E and I are Young’s modulus of elasticity and area moment of inertia of the cross-section of the pipe; and M and

m are the fluid mass and pipe mass per unit length. The above equation can be obtained by showing that the rate of

change of linear momentum of a fluid element is given by the expression (Paı̈doussis, 1998)
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and from the equations of motion of a fluid element and its corresponding pipe element (see Fig. 2) in the x and y

directions
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1The momentum correction factor has appeared in the fluid mechanics literature earlier (Benedict, 1980).
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In Eqs. (3)–(6), A denotes the cross-sectional area of the pipe, S denotes its internal surface area per unit length, p

denotes the fluid pressure, q denotes the shear stress in the fluid, and F denotes the force per unit length normal to the

wall. For the pipe element, Q, M and T denote the traverse shear force, bending moment, and tension, respectively.
3. Non-uniform velocity profile

3.1. Triple plug flow model

The triple plug flow model assumes three concentric volumes of fluid being conveyed through the pipe; the cross-

sectional area of these volumes are shown in Fig. 3. The flow velocity is different for the three volumes but is assumed to

be constant within each volume. The triple plug flow is not physically realizable, but its analysis provides the framework

for investigation of a general velocity profile. Note that the fluid volume at the center (marked 1 in Fig. 3) has a single

fluid–fluid interface; the volume in the middle (marked 2 in Fig. 3) has two fluid–fluid interfaces; and the outermost fluid

volume (marked 3 in Fig. 3) has one fluid–fluid and one fluid–pipe interface. The analysis for a general velocity profile

will require us to introduce more volumes with two fluid–fluid interfaces, similar to volume 2. It is for this reason that

three ‘‘plugs’’ are required; using fewer does not give rise to volumes with two fluid–fluid interfaces, and using more

creates redundant elements.

To extend the analysis of plug flow in Section 2 to triple plug flow, we denote the cross-sectional areas of volumes 1,

2, and 3 as A1, A2 and A3, respectively; their flow velocities as U1, U2 and U3, respectively; and their mass per unit length

as M1, M2 and M3, respectively. F12, F23 and F3p denote the radial force per unit length between fluid volumes 1 and 2,

fluid volumes 2 and 3, and fluid volume 3 and the pipe, respectively. The shear force at these interfaces are denoted by

q12, q23 and q3p, respectively, and the surface area per unit length of these interfaces are denoted by S12, S23 and S3p,

respectively. The dynamics of the fluid volumes 1–3 can now be replicated from Eqs. (3) and (4), and that of the pipe

from Eqs. (5) and (6), as follows:
Fig. 2. Free-body diagram of (a) a fluid element and (b) its corresponding pipe element.
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Fig. 3. A cross-sectional view of the three fluid volumes of a triple plug flow.
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Volume 3:

�A3
@p

@x
�q3pS3p þ q23S23�ðF3p�F23Þ

@y

@x
¼ 0; ð11Þ

ðF3p�F23Þ�pA3

@2y

@x2
�ðq3pS3p�q23S23Þ

@y

@x
¼M3

@

@t
þU3

@

@x

� �2
y; ð12Þ

Pipe:
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The summation of equations in the x direction, namely Eqs. (7), (9), (11) and (13), gives
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Note that (A1 þ A2 þ A3) = A, where A is the inner cross-sectional area of the pipe. For AaAðxÞ, we have from

Eq. (15)

@

@x
ðT�pAÞ ¼ 0; ð16Þ

which is the same as that of plug flow (Paı̈doussis, 1998). The summation of equations in the y direction, namely (8),

(10), (12) and (14), gives
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Following the derivation of plug flow (Paı̈doussis, 1998) and substituting (T�pA)=0 and Q¼�EIð@3y=@x3Þ into

Eq. (17) we get
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3.2. N-plug flow model

It is simple to envision the analysis of the preceding section with more volumes. The additional volumes, similar to

volume 2 of triple plug flow in that they possess two fluid–fluid interfaces, do not complicate the analysis since all
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interfacial terms are cancelled. Thus Eq. (18) can be rewritten as
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where N is any integer greater than three. For very large values of N, the volumes have infinitesimal thickness and the

summations in the coefficients of Eq. (19) can be replaced with integrals. If we define the average velocity of fluid as

U ¼
1

A

ZZ
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UðAÞdA; ð20Þ

for a cylindrical pipe of radius R, we have
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The coefficients of the dynamical equation in Eq. (19) can now be expressed as
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where rf is the density of the conveyed fluid, and m is the nondimensional momentum correction factor. For a

cylindrical pipe with a known fluid velocity profile U(r), m has the expression

m¼
2
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It is worth noting that for a uniform velocity profile, m¼ 1. Using the algebraic simplifications in Eq. (22), Eq. (19) can

be rewritten as follows:
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Note the similarity of Eq. (24) with that of plug flow given by Eq. (1). All terms are essentially identical with the

exception of the additional constant m, which is a function of the velocity profile.
4. Analysis of a cantilever pipe

4.1. Solution of the differential equation

We analyze the behavior of a fluid-conveying pipe for cantilever boundary conditions, namely

yð0; tÞ ¼ 0; yxð0;tÞ ¼ 0; yxxðL;tÞ ¼ 0; yxxxðL;tÞ ¼ 0; ð25Þ

where yx, yxx, and yxxx are the first, second, and third partial derivatives of y with respect to x, respectively. The

equation of motion is nondimensionalized with the following change of variables
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y

L
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x

L
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By introducing the nondimensional velocity, mass fraction and frequency as follows:
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and assuming a separable form for Y(X,T) such that

Y ðX ;TÞ ¼fðX Þe�ioT ; ð26Þ

it is possible to get the nondimensional equation of motion and boundary conditions
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fð0Þ ¼ 0; fX ð0Þ ¼ 0; fXX ð1Þ ¼ 0; fXXX ð1Þ ¼ 0; ð28Þ

where fX , fXX , and fXXX are the first, second, and third derivatives of f, respectively. The solution of f is assumed to

be of the form fðX Þ ¼AezX and this yields the characteristic polynomial

z4 þ mu2z2 þ 2b1=2uioz�o2 ¼ 0: ð29Þ

For specific values of m, u and b, Eq. (29) provides four roots, zn, n = 1, 2, 3, 4, where zn ¼ znðoÞ. The complete solution

of fðX Þ has the form

fðX Þ ¼A1e
z1X þ A2e

z2X þ A3e
z3X þ A4e
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The solution of Eq. (30) based on the boundary conditions in Eq. (28) results in the complete solution
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An inspection of the above equation indicates that Y(X,T) is a product of three exponential terms of which the first term

is bounded since X is bounded and the second term is oscillatory since the exponent is imaginary. The third term can

grow unbounded with time if Im½o�o0 and this represents unstable dynamics of the pipe. The exact mode and velocity

at which the fluid-conveying pipe becomes unstable depends on the fluid mass fraction b.
4.2. Determination of momentum correction factor

For laminar flow, the Poiseuille solution of Navier–Stokes equation holds (Potter and Foss, 1982) and the value of m
can be determined analytically to be equal to 4/3. For turbulent flow, the value of m approaches unity as the value of

Reynolds number approaches infinity. Numerical values of m for turbulent flow were calculated based on Eq. (23) using

velocity profiles generated by the commercial software STAR-CCM.2 The literature (Benedict, 1980) commonly cites a

single value of m for turbulent flow; the values cited are derived using assumptions that are better suited to high-

Reynolds number turbulence. Since the modeling presented in Section 3.1 relaxes the assumption of high-Reynolds

number turbulence, it is necessary to use a flow model with improved resolution near turbulent transition. Even with

this improved resolution, knowledge of m is required for more values of the Reynolds number than are feasible to

simulate. To predict the value of m for laminar, transition, and turbulent flow regimes, we use the following curve-fit:

mðReÞ ¼

4=3 Re � 2200;

3:647�0:001052�Re 2200o Reo2413;

1:04þ 167:2=Re Re Z2413:

8><
>: ð32Þ

It can be seen from Fig. 4 that the data points obtained from simulation matches well with the expression of m in

Eq. (32). The choice of 2200oReo2413 to define the ‘‘transition region’’ is somewhat arbitrary, as might be the choice

of using one single value for m to represent a phenomenon as complex as turbulent transition. However, the authors

note that for a given flow setup the range of velocities corresponding to transition flow is small, making the choice of the

transition model relatively unimportant.3

From the expressions for the nondimensional velocity and the Reynolds number, we get for a circular pipe

u¼
M

EI
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n
) u¼ nLRe

ffiffiffiffiffiffiffiffi
prf

4EI

r
: ð33Þ
2A product of CD-Adapco.
3The laminar to turbulent transition region can be seen in the Argand diagram in Fig. 5.
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Clearly, a value of u does not uniquely determine the Reynolds number. The geometric properties of the pipe (L, E, I)

and density and kinematic viscosity of the working fluid (rf , n) should be specified to determine the Reynolds number

for a given u. Since the momentum correction factor m is a function of the Reynolds number, it follows that the value of

m cannot be determined from the value of u alone.

5. Uniform and non-uniform flow model comparison

5.1. Turbulent flow

The locus of the first three roots of Det(Z) = 0 is shown in the Argand diagram in Fig. 5(a) for b¼ 0:308 for both

uniform and non-uniform flow models. Since the fluid-conveying pipe undergoes flutter instability in the second mode,

a separate Argand diagram of the loci of the second root is shown in Fig. 5(b). The root loci for the uniform flow model

are a function of u alone (m is implicitly assumed to be unity) but they are a function of both u and m for the non-

uniform flow model. As noted in Section 4.2, the value of m is not uniquely defined in terms of u. Certain dimensional

coefficients related to the working fluid and pipe geometry must be assumed to obtain this relationship. The non-

uniform flow model assumes water to be the working fluid ðrf ¼ 1000 kg=m3, n¼ 1:0� 10�6 m2 sÞ and the following

parameters for the pipe:

E ¼ 1:7MPa; I ¼ 6:48� 10�10 m4; L¼ 0:5m: ð34Þ
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It is acknowledged that the need to specify dimensional parameters is a limitation but this limitation is not significant.

An inspection of Fig. 4 reveals that m is weakly related to the Reynolds number for turbulent flow and therefore

dependence of m on the dimensional parameters is not significant.

It can be seen from Fig. 5 that the root loci for the uniform and non-uniform flow models are quite different, though

their m values are quite similar.4 A close look at the second-mode root loci indicates that the uniform flow model

predicts flutter instability of the pipe to occur for a critical velocity of ucr = 8.13 with ocr ¼ 23:06, whereas the non-

uniform flow model predicts significantly lower values of ucr= 6.94 (15% lower) and ocr ¼ 14:46 (37% lower). Clearly,

the dynamics of the system are very sensitive to the value of m in the neighborhood of b¼ 0:3. The values of ucr and ocr

are plotted in Fig. 6 for different values of b. This figure indicates that the non-uniform flow model predicts significantly

lower values of ucr and ocr for b in the neighborhood of 0.7 as well. There is good agreement between the uniform and

non-uniform turbulent flow models for values of b that are not in the neighborhood of 0.3 or 0.7.

5.2. Laminar flow

In prior work, the plug flow model implicitly made the assumption that m¼ 1. It is clear from Fig. 4 that this

assumption is reasonable only for high Reynolds number. The non-unique relationship between u and Re allows

situations where this assumption is not reasonable. For example, inspection of Eq. (33) reveals that a sufficiently long
4The value of m is implicitly assumed to be unity for the uniform flow model, whereas it has values in the neighborhood of 1.05 for

the non-uniform flow model.
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pipe could have a large value for u at low Reynolds number. A sufficiently long fluid-conveying pipe could therefore

undergo flutter instability with laminar flow, in which case m¼ 4=3. In the case of turbulent flow, the near-unity value of

m yields values of ucr and ocr which differ significantly from the uniform case only in certain thin regions of the b
parameter space. Fig. 7 is analogous to Fig. 6, but assumes laminar flow and gives a very different result. The values of

ucr for laminar flow are quite different from that of uniform flow in all regions of the parameter space. The values of ocr

for laminar flow are similar to that of uniform flow over much of the range of b but there are certain regions where the

predicted values are significantly different. Unlike the thin regions near b¼ 0:3 and 0.7 for turbulent flow (see Fig. 6),

the regions of large separation for laminar flow extend from approximately b¼ 0:29 to 0.40 and from b¼ 0:69 to 0.93.
6. Concluding remarks

The stability of cantilever pipes conveying fluid with a fully developed non-uniform velocity profile was assessed. The

relevant equation of motion, derived herein, is tractable, requiring only the use of a single empirical parameter, m, which
accounts for the dependance of fluid momentum on the square of the fluid velocity. A sample method for the

determination of m is described. In previous analyses, which assumed a uniform velocity profile, this parameter was

implicitly assumed to be unity. While this is a reasonable approximation at high Reynolds number, m¼ 1 is the

minimum value possible, which is approached only in the limit of infinite Reynolds number. That is, the average

momentum flux per unit mass for real fluid flows will always be greater than the uniform case, and the uniform profile

assumption becomes monotonically less accurate as the Reynolds number decreases. This is particularly true in the case

of laminar flow, where the value of m reaches its maximum value. It was shown that the dependence of u, the

nondimensional velocity relevant to the stability of the pipe, is not uniquely dependent on the Reynolds number. Thus,

a large value of u may be attained at a relatively low Reynolds number.

The stability characteristics of a sample pipe were assessed with our updated model. In this pipe, the fluid became

turbulent at relatively low u with the effect that m � 1:05 when u approached values necessary to achieve flutter

instability. This proximity to the uniform model causes similarity between the predictions over much of the parameter

space. However, there are significant differences in certain sensitive regions of the parameter space. A pipe with

dimensions such that the conveyed fluid is laminar at the onset of flutter instability exhibited markedly different

stability characteristics from the uniform case. Both the critical velocity and critical frequency were significantly

different over large regions of the parameter space.

The authors believe that this updated model is a worthy addition to the body of literature on fluid-conveying pipes if

for no reason other than its tractability. The equations of motion are no more difficult to solve than those of the

uniform case for a known value of m. While the accurate assessment of m is nontrivial, it can be evaluated a priori for the

entire range of flow velocities. Finally, the similarity of this model to the uniform flow model allows prior work to be

updated easily. The predictions of instability of pinned–pinned and clamped–clamped pipes, and pipes with coaxially

flowing external fluid may also be corrected with our model.
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Note from the Editor

It is remarkable that it took 48 years since Brooke Benjamin’s seminal papers before the effect of a nonuniform

velocity profile on the dynamics of pipes conveying fluid was tackled for the first time [the paper by Guo et al. (2010)5 in

this very issue of JFS]. Yet, hardly a month later, a second paper on the same subject was submitted, coincidently (and

most appropriately) also to JFS: the present paper. These two papers use different approaches; hence there was no

impediment to publication of both. However, this underlines how things are accelerating in research publications!
5C.Q. Guo, C.H. Zhang, M.P. Paı̈doussis, 2010. Modification of equation of motion of fluid-conveying pipe for laminar and

turbulent flow profiles. Journal of Fluids and Structures 26(5), this issue.
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